

ANALYTICAL STUDY OF SARVAAPASMARAHARA RASA

¹Dr Sajid Rajasaheb Gaddanakeri ²Dr Prakash R. Deshpande ³Dr Veena Nandennavar
¹PG Scholar ²Professor & HOD ³Associate Professor, Dept. of Rasashastra and
Bhaishajya Kalpana, BVVS Ayurveda Medical College and Hospital,
Bagalkot, Karnataka, India

ABSTRACT

Sarvaapasmara Rasa is a classical Pottali Rasayana explained in Rasa Tantra Sara va Siddha Prayoga Samgraha-II and is indicated in Apasmara. It contains Rasa Sindhura, Shuddha Srotoanjana, Shuddha Haratala, Shuddha Manashila, Shuddha Gouripashan and Shuddha Vatsanabha and prepared by Pottali Paka method. Very few formulations have been selected for study for anti-epileptic activity for research. Hence this, Sarvaapasmara Rasa was prepared as per classical reference for pharmaceutical standardization. Organoleptic parameters, Physico-chemical parameters, particle size analysis, XRD, FTIR and XRF studies were carried out. The yield of Sarvaapasmara Rasa was 57%, presenting as a greyish-brown, lusterless fine powder with an agreeable odour. XRD analysis confirmed the presence of fine crystalline structures and organo-metallic complexes with a median particle size of 1.4 μm .

KEYWORDS: Sarvaapasmara Rasa, Pottali Rasayana, Pharmaceutical standardization, Physico-chemical Analysis.

INTRODUCTION

Rasashastra, the Alchemical branch of Ayurveda, emphasizes the transformation of metals and minerals into therapeutically potent and safe Rasoushadhi's. Paradeeya Kalpas are noted for their Yogavahi and Rasayana properties. Among these, Pottali Rasayana represents a specialized form of mercurial processing involving compaction of ingredients in molten sulphur to enhance potency and stability.

Sarvaapasmara Rasa is one such Pottali kalpa explained in Rasa Tantra Sara va Siddha Prayoga Sangraha-II¹ indicated in Apasmara roga. Apasmara roga, in modern neurological terminology is correlated to epileptic disorders. Epilepsy is a chronic disorder characterized by recurrent seizures

due to abnormal neuronal discharges. Globally², more than 50 million individuals are affected with developing countries bearing 80% of the burden. Despite of several antiepileptic drugs, adverse effects and drug resistance remain major concern in the treatment of epilepsy. Hence, Sarvaapasmara Rasa is being selected for pharmaceutical standardization and its analytical evaluation.

AIMS AND OBJECTIVES

- To prepare *Sarvaapasmara Rasa*.
- To subject SAR for physico-chemical analysis.
- To subject SAR for instrumental analysis.

MATERIALS AND METHODS

Pharmaceutical Work:

Materials:

Raw materials were procured from M/S Dorle & Son's, Kolhapur and were authenticated by experts.

Shodhana of Parada, Gandhaka, Vatsanabha, Haratala and Manashila were carried out in Dept. of RSBK, BVVS Ayurved Medical College & Hospital, Bagalkot.

Rasa Sindur was prepared at Dept. of RSBK, BVVS Ayurved Medical College & Hospital, Bagalkot.

Analytical Study was carried out at HSK College of Pharmacy, Bagalkot.

Instrumental analysis was carried out at accredited laboratory i.e. Jeevanarekha Laboratories, Sambhaji Nagar (Aurangabad), Maharashtra.

Methods:**Pharmaceutical Study:**

Parada Shodhana³ was carried out by using haridra churna and kumari swarasa with Tirayak Patana Method.

Gandhaka Shodhana⁴ was performed in godugdha media.

Srotoanjana⁵, Vatsanabha⁶, Haratala⁷, Manashila⁸, and Gouripashan⁹ were subjected for shodhana procedures according to Rasa Tarangini.

Rasa Sindur was prepared according to Rasa Tarangini¹⁰.

Sarvaapasmaraahara Rasa was prepared according to Rasa Tantra Sara va Siddha Prayoga Sangraha-II by **Pottali Paka** method.

Observations and results of analytical study:

Analyses were conducted at accredited laboratories;

Test of Perfectness of SAR Kajjali:

Sarvaapasmaraahara Rasa kajjali was tested for Nischandratva, Rekhapurnatva,

Varitaratva and Unam. All four tests passed for perfectness of kajjali.

Table No. 1: Showing the result of Test of perfectness of kajjali

Test	Observation and Results
Nischandratva	The Kajjali was observed in bright sunlight. It was not having any luster – Positive
Rekhapurnatva	The Kajjali was rubbed in between index finger and thumb. It penetrates the furrows of the fingers – Positive
Varitaratva	A small amount of Kajjali was carefully sprinkled over the surface of a beaker contained a stagnant water. It was found that total portion of kajjali was floating on the water surface – Positive
Unam	A small amount of Kajjali was carefully sprinkled in beaker full of water and a grain is placed on the floating matter. It was found that the grain was floating on the water surface – Positive

Table No. 2: Showing preparation of Sarvaapasmaraahara Rasa

Ingredient	Quantity	
<i>Sarvaapasmaraahara Rasa</i>	Before Shodhana	200gms
	After Shodhana	114gms
	Loss	86gms
Percentage of SAR obtained		57%

Organoleptic study: Colour, odour, taste, and texture.

Table No.3: Organoleptic features of Sarvaapasmaraahara Rasa.

S.N.	Features	Before	After
1	Colour	Grey	Greyish brown
2	Form	Powder	Powder
3	Odor	Agreeable	Agreeable
4	Weight	200	114

Physico-chemical study¹¹: Moisture, pH, total ash, and acid-insoluble ash.

Table No.4: Qualitative Analysis of Prepared Sarvaapasmaraha Rasa.

S.N.	Test	Sarvaapasmaraha Rasa
1	Loss on drying	0.6% w/w
2	Total ash	74.5 w/w
3	Acid insoluble ash	2.5 w/w
4	Water soluble ash	1.5 w/w
5	pH	5.65

Table No. 5: Sarvaapasmaraha Rasa Vati analysis.

S.N.	Parameters	Results
1	Disintegration	34min
2	Hardness	5.75kg/cm ²
3	Friability	0.41%

Instrumental Analysis: XRD, XRF, FTIR and Particle size.

Table No. 6: Showing the result of XRD

Compound	Composition	Cryst al	2 the tas	D spa cing	Inte nsity
Lead Sulfide	PbS	Cubic	30.	3.42	78.2
			245	87	84.2
			35.	2.96	50.3
			086	76	
			50.	2.09	
			466	83	
Merc			30.	3.35	65.5

ury Sulfid e	HgS	Hexa gonal axis	964	09	37.3
			32.	3.16	43.5
			817	65	
			36.	2.86	
			386	50	
Arsen ic Sulfid e	AsS	Mono clinic	32.	3.21	68.1
			264	93	53.5
			34.	3.00	79.6
			615	66	
			35.	2.95	
			224	63	
Arsen ic Trisul fide	As ₂ S ₃	Mono clinic	21.	4.77	50.7
			614	05	59.6
			26.	3.97	73.2
			013	45	
			32.	3.18	
			651	21	

RESULTS

Pharmaceutical Findings.

Sarvaapasmaraha Rasa Yield: 57%

Analytical results:

Organoleptic Properties:

- Greyish-brown powder;
- Agreeable odour;
- Tasteless.

Tablet Testing parameters:

- Disintegration time-34 min;
- Tablet Hardness-5.75 kg/cm²;
- Friability-0.41%.

Particle size suggests suitability for applications requiring high surface area, enhanced reactivity and uniform dispersion.

Physico-chemical parameters confirmed stability and purity.

XRD and FTIR spectra revealed crystalline and organometallic structures.

The XRF analysis showed herbo-mineral formulation enriched in arsenic, mercury sulfides with significant sulfur content.

DISCUSSION

Sarvaapasmaraahara rasa kajjali was tested for nischandrata, rekhapurnata, varitaratva and unam. It passed all four tests for perfectness of kajjali. Sarvaapasmaraahara Rasa was prepared as per Rasa Tantra Sara va Siddha Prayoga Sangraha-II. Analytical studies confirmed transformation of raw minerals into bio-compatible, stable forms through classical samskara. The use of gandhaka paka and bhavana with devadali swarasa likely facilitated formation of organometallic complexes enhancing pharmacodynamic activity. The presence of traced bio-elements detected by XRF, such as Hg, S and As in stable bound forms, suggests complexation rather than toxicity, aligning with classical detoxification principles of Rasashastra.

CONCLUSION

Present analytical study established classical preparation method of Sarvapasmaraahara *Rasa* by *gandhaka paka* method. Systematic shodhana of raw drugs and devadali swarasa bhāvana resulted in a stable, lusterless, fine kajjali fulfilling all classical tests of Nischandrata, Rekhapurnata, Varitaratva and Unam. Pharmaceutical procedures ensured complete transformation of raw materials into bio-compatible, stable and therapeutically active forms. Analytical findings validate the structural integrity, safety and standardized quality of Sarvapasmaraahara *Rasa*. Instrumental analysis confirmed the transformation of raw minerals into therapeutically safer, complexed and stable crystalline compound. These results provide a scientific basis for its classical preparatory method by gandhaka paka method.

REFERENCES

1. Prof. Krishna Gopal. Rasa Tantrasara and Siddha Prayoga Samgraha part-II, Published by Krishna Gopal Ayurveda Bhavan: 20th Edition 2011. Page No.-137.
2. World Health Organization. Epilepsy: A Public Health Imperative. WHO, Geneva; 2019.
3. Shri Acharya Indradev Tripathi. Rasendra Sara Sangraha, Chaukamba Sanskrit Samsthana Varanasi. Second edition 1998, 1st Chapter Shloka no-30, Page number-09.
4. Acharya Vagbhata. Rasa Ratna Samucchaya with Rasa prabha Hindi vyakhya by Dr. Indradev Tripathi. Chaukamba Sanskrit Samsthana Varanasi. Edition 1998, 3rd chapter Shloka no-20, Page number-28.
5. Pranacharya Sadananada Sharma virachita. Rasatarangini, Hindi translation, Edited by Pt. Kashinath Shastri. Motilal Banarasidas publication Varanasi. 11th Edition 2004, 22nd Chapter Shloka no-40, Page number-588.
6. Pranacharya Sadananada Sharma virachita. Rasatarangini, Hindi translation, Edited by Pt. Kashinath Shastri. Motilal Banarasidas publication Varanasi. 11th Edition 2004, 24th Chapter Shloka no-23. Page number-651.
7. Acharya Vagbhata. Rasa Ratna Samucchaya with Rasa prabha Hindi vyakhya by Dr. Indradeva Tripathi. Chaukamba Sanskrit Samsthana Varanasi. Edition 1998. 3rd Chapter Shloka no-70, 93. Page number-33, 37.
8. Sri Vagbhatacharya, Rasa Ratna Samucchaya, English Translation by Dr Ashok D. Satpute, Chetan Prakashan, Mysore. Volume-1, 1st Edition 1990, Chapter 3/93-94, Pp 29.
9. Rasavagbhata, Rasa Ratna Samucchaya, [Ed] Kaviraj Ambikadatta Shastri, 1995, Chaukambha Amara Bharathi Prakashana,

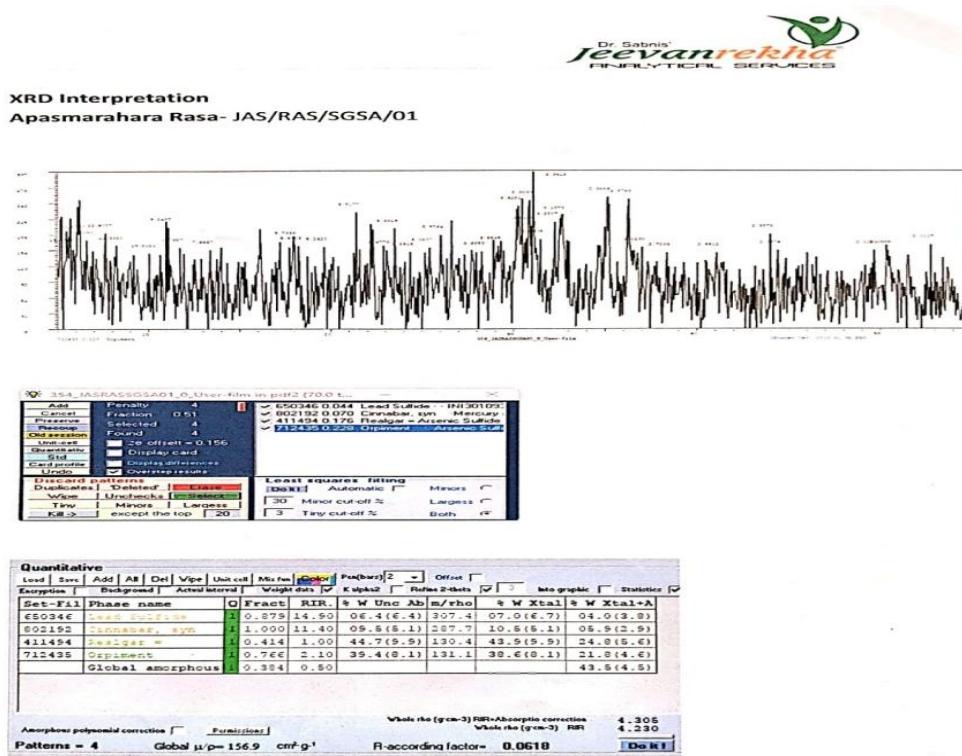
3rd chapter, 130th verses, 80p.

10. Sharma Sadanand, Rasatarangini, Rasavigyana Hindi commentary, Motilal Banarasidas Publication, Delhi, 11th Edition 1979, Reprint 2000, 6/168 – 176, Pp – 136.
11. Tripathi KD. Essentials of Medical Pharmacology. 8th edition. New Delhi: Jaypee Brothers; 2018.

CORRESPONDING AUTHOR

Dr Prakash R. Deshpande

Professor & HOD, BVVS Ayurveda Medical College and Hospital,
Bagalkot, Karnataka, India
E-mail: drprakashdeshpande76@gmail.com


Source of support: Nil

Conflict of interest: None Declared

Cite this article as

Dr Prakash R. Deshpande: Analytical Study of Sarvaapasmaraha Rasa; X (5): 2696-2704

Fig1: XRD Report

Fig 2: XRD Report

Compound	Composition	Crystal	2 theta	D spacing	Intensity
Lead Sulfide	Pb S	Cubic	30.245	3.4287	78.2
			35.086	2.9676	84.2
			50.466	2.0983	50.3
Mercury Sulfide	Hg S	Hexagonal axis	30.964	3.3509	65.5
			32.817	3.1665	37.3
			36.386	2.8650	43.5
Arsenic Sulfide	As S	Monoclinic	32.264	3.2193	68.1
			34.615	3.0066	53.5
			35.224	2.9563	79.6
Arsenic Trisulfide	As ₂ S ₃	Monoclinic	21.614	4.7705	50.7
			26.013	3.9745	59.6
			32.651	3.1821	73.2

3 mesh
Mrs. Umeshi Sabnis
M. Pharm (Q.A.)

Chief Research Scientist

Jeevanrekha Analytical Services (OPC) Pvt.Ltd.

Test result relate only to the sampling tested. This report shall not be reproduced except in full, without the written approval of the laboratory.

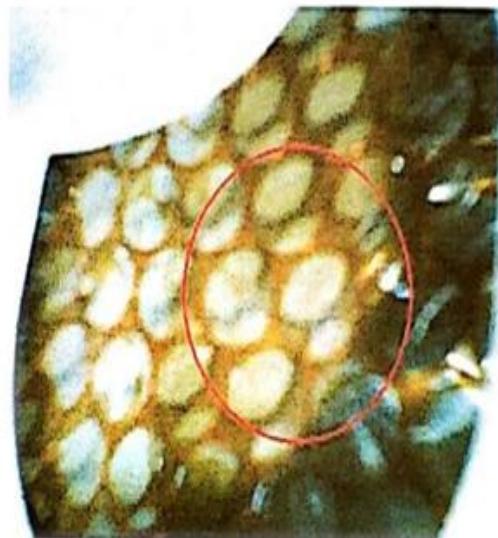
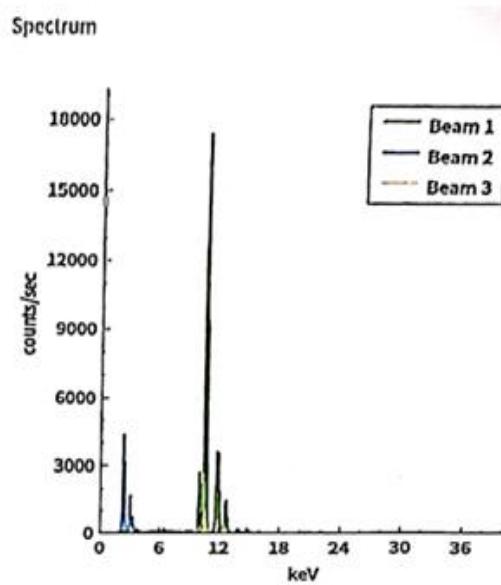


NOTE: Any queries with sample result or interpretation contact within 7 working days after report issuance date.

Fig 3: XRF Report of Sarvaapasmaraḥara Rasa

Elapsed time: 60.0s

El	PPM	$\pm 3\sigma$
Mg	4.98%	0.76
Si	8500	640
P	2570	190
S	19.56%	0.34
Ca	2560	190
Ti	630	550
Cr	150	100
Fe	2780	150
Co	64	52
Ni	27	26
Cu	993	57
As	22.86%	0.38
Se	84	52
Rb	853	44
Nb	912	32
Mo	1903	61
Ag	109	58
Sn	320	110
Sb	770	150
Ba	360	240
Hg	20.72%	0.36
Pb	8.28%	0.16
LE	21.19%	0.73
El	PPM	$\pm 3\sigma$
Al	ND	<3800
Cl	ND	<1400
V	ND	<61
Mn	ND	<1300
Zn	ND	<29
Sr	ND	<5
Y	ND	<6
Zr	ND	<2
Cd	ND	<7
La	ND	<9000
Ce	ND	<12000
Pr	ND	<15000
Nd	ND	<21000
W	ND	<110
Bi	ND	<52

Fig 4: FTIR Report of Sarvaapasmaraha Rasa

FTIR Analysis Interpretation

Date: 05/04/2025

Sample Code: JAS/RAS/SGSA/01
Sample Name: Sarva Apasmaraha

Group Frequency (cm ⁻¹)	Wave Number (cm ⁻¹)	Intensity	Functional Group and Type of Vibration	Interpretation / Remarks	Active Constituents	Source (Origin)
200–400	669–797	Medium	As–S, Pb–S, Hg–S lattice vibrations	Indicative of metal sulfides like realgar, orpiment, mansil, haratala	Arsenic trisulfide (As ₂ S ₃), Mercuric sulfide (HgS), Lead sulfide	Manahshila, Haratala, Parada, Gandhaka, Srotoanjana
1000–1200	1000	Medium	S=O / As–O stretching	Oxidized arsenic or sulfur compounds	Arsenates/sulfates	Somala, Haratala, Manahshila
1000–1200	1144	Medium	Sb–O / S–O bending	Lead or sulfur–oxygen bonding	Lead-oxides or S-based compounds	Srotoanjana / Gandhaka
1300–1500	1374–1458	Medium	NO ₂ ⁻ , CH ₃ deformation, N–H wag	Organic/nitrogenous components from vatsanabha	Alkaloids, nitrogen groups	Gomutra used for shodhan of Vatsanabha (Aconite alkaloids)
1600–1700	1507–1540	Medium	Amide II bending	Proteinaceous or herbal bhavana residue	Plant alkaloids / peptides	Milk and ghee used for shodhan of Vatsanabha
1600–1700	1617–1654	Medium	Amide I, C=C stretching	Bhavana dravya residues, plant matter	Organic acids, esters	Herbal extracts
1650–1750	1684–1772	Weak	C=O stretch / organometallic overtone	arsenic complexation	Metal-organic conjugates	Haratala, Manahshila
1800–2300	1829–1991	Weak	Metal-ligand overtones	Hg–S, Pb–S interactions	Metal sulfide networks	Parada, Somala, Srotoanjana
2000–2500	2112–2369	Weak	Metal-halide or sulfide interactions	Complexation regions	HgCl, AsCl traces	Processed metallic salts
2800–3000	2849–	Weak	C–H stretching	Residual hydrocarbons	Organic residues	Vatsanabha /

	2918					herbal materials
	3300–3500	3235–3903	Weak	O–H / N–H stretching	Moisture or hydroxyls from bhavana dravyas	Hydroxyl, Amine groups

Conclusion:

The FTIR analysis of Sarva Apasmaraha (Sample ID: JAS/RAS/SGSA/01) confirms the presence of complex mineral and organometallic components that align with its classical Rasashastra formulation. Peaks in the 669–797 cm⁻¹ range confirm metal-sulfide bonds, indicating the presence of Manahshila (As₂S₃), Haratala (As₂S₃), Somala (As₂O₃), and Srotoanjana (PbS).


Mid-IR peaks from 1374 to 1654 cm⁻¹ suggest the presence of organic moieties, likely from Vatsanabha (aconite alkaloids) and herbal shodhan dravyas used for purification. The weak C=O and metal-ligand overtone signals (1684–2342 cm⁻¹) further support the formation of organometallic complexes, while the broad O–H and N–H stretches (3235–3903 cm⁻¹) indicate the role of moisture and proteinaceous purifying agents.

Prepared by:

Mrs. Unmeshi Sabnis
M. Pharm (Q.A.)
Chief Research Scientist
Jeevanrekha Analytical Services (OPC) Pvt. Ltd.

Fig 5: Sarvaapasmaraha Rasa Particle size analysis:

